

## Impact of temperature and moisture stability for packaging choices of perovskite solar cells

## Duncan Harwood D2Solar

#### Overview



- Operating conditions for different markets
- Fabrication and testing conditions
- Lifetime predictions for different activation energies
- Moisture hardening of modules
- Examples of accelerated humidity testing
- Recommendations for early module development



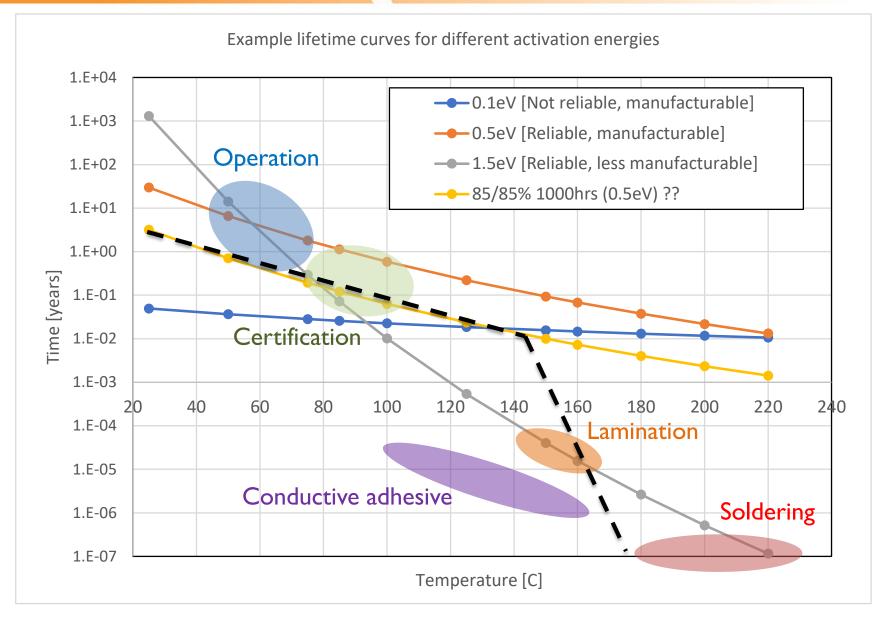
#### **Operating conditions for different markets**

| Market            | Insolation | Temperature<br>range | Humidity<br>range | Desired<br>lifetime |
|-------------------|------------|----------------------|-------------------|---------------------|
| Utility/C&I       | AMI.5      | -40C to 65C          | 0% to 90%         | >30 years           |
| Residential/BIPV  | AMI.5      | -40C to 85C          | 0% to 90%         | >20 years           |
| VIPV              | AMI.5      | -40C to >100C        | 0% to 90%         | > 7 years           |
| Aerospace         | AM0        | -65C to 65C          | 0%*               | > 5 years           |
| Space - orbit     | AM0        | -100C to 70C         | 0%*               | > 2 years           |
| Space - off orbit | AM0        | -220C to 50C         | 0%*               | > 10 years          |

- Temperature and humidity limitations can make markets with lower temperatures and shorter lifetime attractive as entry points.
- UVB (280-315nm) exposure can be more significant for aerospace and space applications.

\* Storage conditions may require humidity exposure for ~6mth period




#### Fabrication and testing conditions

| Process step        | Material type         | Temperature  | Duration        |
|---------------------|-----------------------|--------------|-----------------|
|                     | Soldering (lead free) | ~220C        | <5s             |
| Interconnect        | Soldering (SnPb)      | ~I90C        | <5s             |
| Interconnect        | Soldering (SnBi)      | ~160C        | <5s             |
|                     | ECA/CCT               | 25-160C      | 30mins – 5s     |
|                     | Cross-linking POE     | 150-165C     | 30mins – 8mins  |
| Lamination          | Cross-linking EVA     | 130-155C     | 40mins – 8mins  |
| Lammation           | Thermoplastic TPO     | 100-130C     | 50mins – 10mins |
|                     | Silicones, low temp   | 25-100C      | 10hrs — 1hr     |
|                     | HAST                  | 120C/100% RH | >100hrs         |
| Reliability testing | Damp heat             | 85C/85% RH*  | 1000-3000hrs    |
|                     | Temp cycle            | -70C to 120C | 200-1000 cycles |

\* Hermetic modules tested at 85C/85%RH are locally at 85C/dry

## Lifetime predictions for different activation energies





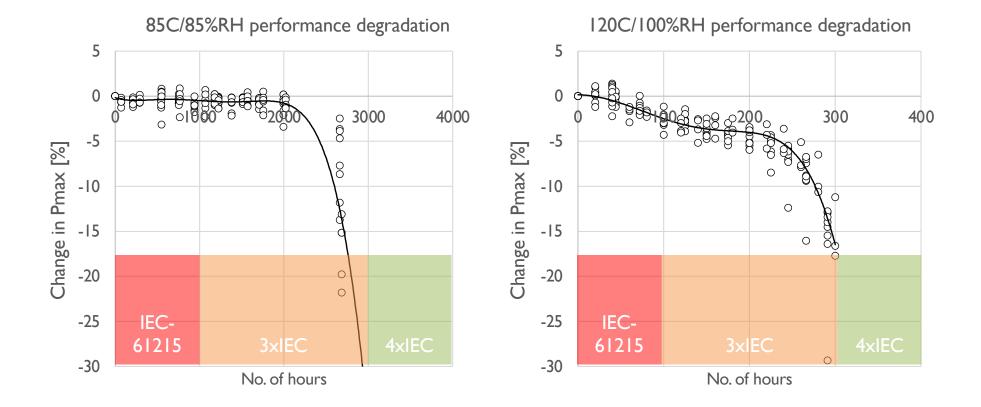


#### Moisture hardening (rigid modules)

| Rigid              | Level I                 | Level 2                           | Level 3                                | Level 4                | Level 5         |
|--------------------|-------------------------|-----------------------------------|----------------------------------------|------------------------|-----------------|
| Superstrate        | Glass                   | Glass                             | Glass                                  | Glass                  | Glass           |
| Encapsulant        | EVA                     | POE                               | POE                                    | POE                    | POE             |
| Edge-seal          | None                    | None                              | None                                   | Yes                    | Yes             |
| Substrate          | Backsheet               | Backsheet                         | Glass                                  | Metalized<br>backsheet | Glass           |
| Cell<br>technology | c-Si (PERC,<br>top-con) | c-Si (PERC,<br>top-con)<br>panels | c-Si (PERC,<br>top-con<br>panels, HJT) | Thin film, HJT         | Thin film, HJT, |

- Rigid modules are typically built with glass superstrates but 'lightweight-rigid' panels can be fabricated with composite substrates and thin glass or polymeric frontsheets.
- Composite materials are often hydroscopic and can be expected to hold high percentages of moisture
- In comparison to EVA, polyolefin materials have both lower water absorption, lower WTVR and higher volume resistivity.

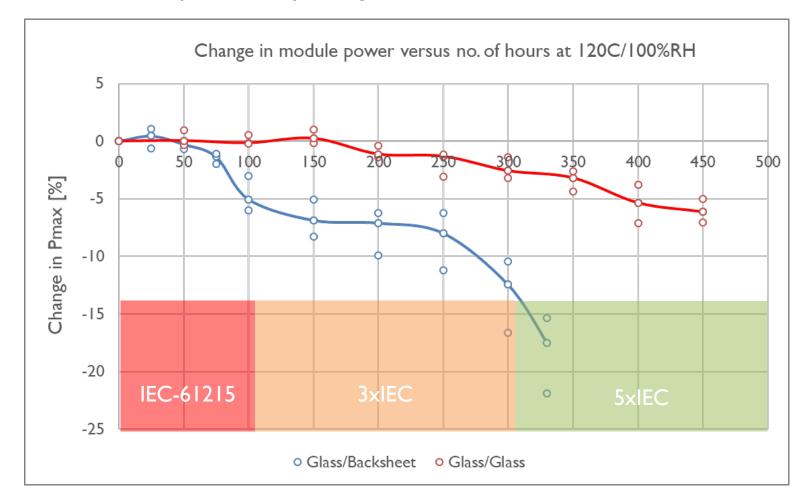



#### Moisture hardening (flexible modules)

| Rigid              | Level I                 | Level 2                           | Level 3                | Level 4         |
|--------------------|-------------------------|-----------------------------------|------------------------|-----------------|
| Superstrate        | PET                     | Fluoropolymer                     | Barrier film           | Thin glass      |
| Encapsulant        | EVA                     | POE                               | POE                    | POE             |
| Edge-seal          | None                    | None                              | Butyl                  | Butyl/frit      |
| Substrate          | Backsheet               | Backsheet                         | Metalized<br>backsheet | Thin glass      |
| Cell<br>technology | c-Si (PERC,<br>top-con) | c-Si (PERC,<br>top-con)<br>panels | Thin film, HJT         | Thin film, HJT, |

- Typical industry targets for high efficiency, high specific power applications are >200W/m2 and >>200W/kg.
- Specific power requirements can be limited by the weight of moisture hardened packaging materials.

### Examples of moisture/temperature acceleration D2 for c-Si panels


- 1000hrs of 85C/85% RH is considered sufficient to represent 25 years of life in most environments for traditional c-Si modules.
- High humidity (above water) or saturated environments (in water) may require extended tests or harsher protocols to generate data in a timely manner.



#### Improving moisture hardness



• Glass-glass modules are one example of a mainstream moisture hardened construction capable of improving lifetime in harsh moisture environments



# Recommendations for early module development



| Deliverable                              | Acceptable | Target |
|------------------------------------------|------------|--------|
| IV repeatability                         | <5         | <2     |
| ECA peel strength [N/mm]                 | >0.5       | >1.0   |
| ECA Rcontact [mohm.cm2]                  | <20        | <10    |
| Encapsulant peel strength [N/mm]         | >0.5       | >1.0   |
| Edge seal peel strength [N/mm]           | >0.5       | >1.0   |
| Pmax (ECA-Solder) [%]                    | <8         | <5     |
| CTM Perovskite                           | <5         | <2     |
| Pmax change @ 200hrs HAST (I" PERC cell) | <3         | <2     |
| Pmax change @ 200hrs HAST (6" PERC cell) | <3         | <2     |
| Pmax change @ 200hrs HAST (Perovskites)  | <5         | <2     |

- Establish testing/light soaking protocols to ensure repeatable IV measurements.
- Determine the temperature sensitivity of devices for packaging (temperature ladder)
- Based on temperature limits build low temperature / moisture hardened package with c-Si cells with known moisture sensitivity e.g. HJT.
- Depending upon material temperature limits HAST (120C/100%RH) and thermal shock (-40C to 85) can be used for 1-2 wk cycles of learning.
- Transfer interconnect and lamination processes to perovskite devices.