

- First Solar at glance
- Perovskites R&D overview
- Characterization and modeling for fast learning
- Conclusion

The Western Hemisphere's **Largest Solar Manufacturer**

- Our CdTe-based thin film technology designed and developed in America
- Higher lifetime energy, with lower levelized cost of electricity (LCOE)
- Financially stable with industry leading bankability
- Lowest carbon PV technology and lowest life cycle environmental footprint

20+ Years of Innovation

- Currently, 20 people involved in perovskites
 - Small portion of R&D, but leveraging vast experience in CdSeTe-based thin film PV
- Main emphasis on stabile energy and robustness in field
 - ...before worrying about scaling and cost
- R&D test sample platform for fast learning
 - 10x10cm² for high-throughput lab testing
 - 24x60cm² mini-modules for field verification

Device modeling in perovskites

- Traditional "detailed" approach used in Cd(Se)Te absorbers is not yet applicable
 - Perovskite material system is still in flux, huge # of degrees of freedom
 - "Snapshots" of first-principle calculations not enough to model defect chemistry
- Approach #1: "Effective" defect chemistry
 - Few "effective" defect species whose diffusion/reactions define metastable distribution of electrically-active centers
 - (Possible) "irreversible" phase transforms causing evolution of band structure/alignment
- Approach #2: Physics-inspired phenomenological energy modeling
 - Coupled generic kinetic mechanisms acting simultaneously to cause metastable changes in device performance and "irreversible" degradation

Both #1 and #2 need high-fidelity test data to fit models

Characterization for fast learning

Test objectives

- Process control & benchmarking
- Model parametrization for physical understanding / energy prediction
- Early issue detection / field robustness

Requirements for fast learning

- Standardized test structure, test recipe, and analysis
- Test procedure to isolate mechanisms and properties
- High-throughput, high-fidelity characterization equipment

)22 Copyright First Solar, Inc.

Process benchmarking: metastable power output

$$P = P_{N} \cdot S \cdot F_{T}(T, S) \cdot F_{L}(L, T)$$
where $S(t) = \sum_{i=1}^{N} s_{i}(t)$, $\frac{ds_{i}}{dt} = \frac{s_{i}^{EQ}(T, L) - s_{i}}{\tau_{i}(T, L)}$

P_N: "nominal" power

S: state (ability to produce power)

F_T: Temperature response function

F_L: Irradiance response function

- Multi-mechanism kinetic model
- Multi-T, multi-irradiance MPP tracking test
- Kinetic power model integrated against meteorological data → Energy prediction
- Process benchmarking with respect to metastable energy losses

High-fidelity, high-throughput characterization

- R&D that targets energy needs lots of ALT capacity
- 1800+ coupon-sits in existing coupon-level systems supporting SC,
 OC, and MPP tracking w/ light and temperature feedback control

Test purpose	Light, Sun	T range, C	Ambient	Capacity
Process benchmark	Binary (0/1)	RT to +85	Air	1728
Process benchmark	1 Sun only	-15 to +105	CDA,RH	64+
Technology model	Analog (0:1.2)	-15 to +105	CDA	64+

 All high-fidelity, high-throughput ALT instruments accept same (standardized) 10x10 cm coupon layout and packaging

New ALT system in assembly

Robustness against abnormal operating conditions Early issue detection

- As compared to CdTe and Si, perovskites are low-T materials less robust against overheat
- Local hot spots / thermal run-away resulting from abnormal operation could become major challenge
- RCOL test, partial shading test, etc., should be implemented for early problem detection
- Module-level material uniformity, intelligent layout, scribing, bussing and ballast design: key components of robustness

Instead of conclusion

He will win who prepared himself

— Sun Tzu, The Art of War

- Peak efficiency is for feasibility demonstration; Customer needs energy + reliability
- High-throughput, high-fidelity characterization is key to fast learning
- Multiple challenges are still ahead we win when we are prepared

LEADING THE WORLD'S SUSTAINABLE ENERGY FUTURE