

Field experience with perovskite mini-modules

Dalia Martinez Escobar, Aaron Wheeler, Sarah Kurtz, Mason Terry October 18th, 2022, PACT Workshop

Agenda

1. Where is UC Merced?

2. Analyzing perovskite mini-modules at UC Merced

- Cleaning outdoor data can be challenging
- Methodology to compare modules of different electrical configuration

3. Perovskite mini-modules showed stable performance for several months!

- Mini-modules sustained >80% of the rated power for 120 days.
- Performance ratio results different from commercial Silicon technologies

4. Takes aways for measuring perovskites mini-modules in real outdoor conditions

Where is UC Merced?

- Collaboration between UC-Merced and Caelux Corporation to test tandem perovskites mini-modules.
- Merced area is known for hot sunny summers and mild winters
 - During the last heat wave (September 2022) we reached a record high of 115 °F!
- UC Merced has an outdoor testing facility to measure IV parameters for long periods at a fixed tilt.

Experiment configuration

+ Modules mounted on test rack

- 35° tilt south-facing
- Cleaned two (2) times per week

+ IV Curve Monitoring with Daystar multi-tracer

- IV curves taken every 5 mins the using 4-wire method
- Modules held at MPP between IV curves
- BOM Temperature with T-type thermocouples

+ Ambient conditions tracked

- Irradiance, ambient temperature, wind speed, relative humidity
- + ----- Perovskite Modules and ------ Silicon reference Module (presented data from this module)

PV mini-Modules tested

+ Caelux provided mini-modules with different electrical configurations.

- General composition: MA chemistry with additives; Rev. B generation chemistry and encapsulation.
- Bandgap ~1.65eV
- Active area: 256 cm²
- **111** is a Tandem Mini-module (4 terminal: PVSK over Si) only perovskite measured
- **47** is a stand-alone PVSK mini-module

Experiment details

Experiment duration	Module ID	111	47
	Start date	2/1/2022	1/31/2022
	Days on sun	121	121
First outdoor measurement at 1 sun	BOM Temp (°C)	43	43
	Voc (V)	33.4	15.95
	lsc(A)	0.10	0.24
	FF(%)	0.55	0.42
	Pmax(W)	1.85	1.62

Data cleaning and filtering

- As any outdoor experiment, some of the data from the experiment turned out messy. We applied some cleaning and filtering to facilitate the data analysis and comparison of the performance.
 - Selected measurements with irradiance values between 900-1020 W/m2 (closer to 1 sun) for temperature coefficient analysis,
 - Daily Pmax > 80% initial measurement values,
 - All the measurements before 132 days of exposure (due to material degradation),
 - Other standard data cleaning procedure (e.g., filtering outliers, disconnection, unintentional shading)
- + We also included some of the low-irradiance data to understand the diurnal transient of the electrical parameters and the performance ratio.

Electrical parameter normalization

- + All electrical parameters were normalized for comparison across module configurations by using the first outdoor measurement and applying a correction for irradiance.
 - We applied these normalization equations to all measurements extracted from the IV curve.

PV module performance ratio

+ The Performance Ratio (PR) calculation gives a relative efficiency for the module and helps us compare between modules of different cell configurations

Si technologies

UCMERCED

+

Results

Observed degradation trends

- + Modules maintained >80% of Pmax for more than 120 days of exposure
 - Stability observed during first 60 days for both samples
 - Mini-module 111 degraded faster than 47
- + Degradation of the material made it difficult to analyze all days.
 - We selected the 60 days (stable region) to calculate the temperature coefficients
- + Note that: Stable region has a lower ambient temperature
 CMERCED

Temperature coefficients Voc and Isc

Temperature coefficients: PMAX

 + Single perovskite and tandem modules have temperature coefficients contrary to silicon modules:

	Si	Pk
Voc	-	+
lsc	+	-
Pmax	-	+

+ 111 and 47 has the same Pmax coefficient for

low temperature and different for high

temperature

UCMERCED

Norm., Corrected. Pmax 111

Diurnal electrical performance: March 24th, 2022

- + Module 47 (Single Perovskite)
- I_{sc} and Pmax showed linear dependence
 with the irradiance while V_{oc} has a
 logarithmic dependence
 - FF is less affected by the irradiance
- The performance of the Pk mini-module
 is *slightly* higher during the afternoon
 than during the morning.
 - This trend is true for multiple days as it degraded.

Performance ratio (matrix method)

Performance ratio for Perovskite Behaves Differently than Silicon!

Matrix Method Results

Si PR decreases with temperature while PVSK PR increases

Take aways

- + We were able to take "good" measurements of the perovskite material that allowed us to estimate the temperature coefficients
 - This was during the region where modules were stable for 60 days on sun.

+ Performance ratio of the perovskite material behaves differently than Silicon!

- We obtained a higher performance at high temperatures opposite to typical Silicon
- Perovskite improves at higher irradiance
- Perovskite performance is better in afternoon than in the morning (mainly due to the Voc and the FF)
- This results are consistent with those results presented by Mark Khenkin

Thank you!

maeddalia@gmail.com
https://www.linkedin.com/in/maedalia/