

Perovskite PV Accelerator for Commercializing Technology (PACT)

Joshua S. Stein PhD., Sandia National Laboratories

WCPEC-8 Milan, Italy

BLACK & VEATCH

https://pvpact.sandia.gov

ELECTRIC POWER RESEARCH INSTITUT W

TOLEDO

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

🚵 Los Alamos

Acknowledgements

- This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number 38050.
- The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
- Coauthors/coresearchers include:
 - Laura Schelhas², Bruce King¹, Wanyi Nie³, Ralph Romero⁴, Jim Crimmins⁵, Cara Libby⁶, Angelique Montgomery¹, Charles Robinson¹, Christa Torrence¹, Marios Theristis¹, Joseph Berry², Timothy J Silverman², Michael Owen-Bellini², Ingrid Repins², Dana Sulas-Kern², Michael G. Deceglie², Robert White², Kirsten Perry², Paul Ndione², Nikos Kopidakis², Jack Schall², Rob Foree⁴, Daniel Zirzow⁵, James Richards⁵, Colin Sillerud⁵, Wayne Li⁶
 - ¹Sandia National Laboratories, United States
 - ²National Renewable Energy Laboratory, United States
 - ³Los Alamos National Laboratory, United States
 - ⁴Black & Veatch, United States,
 - ⁵CFV Labs, United States,
 - ⁶Electric Power Research Institute, United States

What are Perovskite Photovoltaics?

- "Perovskite" refers to a crystal ٠ structure.
- Metal Halide Perovskite PV has a . range of chemical compositions:

A= Pb, Sn, Ge, Bi, Sb, ... X=halides (Cl, Br, I) **B= Organics or metal (Cs)**

To make things even more ٠ complex, alloys are possible.

Sandia National Laboratories

U.S. DEPARTMENT OF

- History
 - First perovskite PV cell made in 2009
 - <3% PCE (power conversion efficiency)
 - PCE has risen fast
 - >= 25.6% today at the cell level (limit – 33%)
 - It took 40 years to achieve this PCE for c-Si.
 - Promise of low cost manufacturing
 - Low temperature
 - Solution processing
 - High speed manufacturing
 - New result from NREL led team (Jiang et al. 2022):
 - Perovskite solar cell with PCE>25%
 - Reactive surface engineering breakthrough – electric field helps to stabilize and boost efficiency.
 - Retained 87% of initial PCE after over 2,400 h (1000 W/m² and 55°C in air (encapsulated))

Monolithic module integration

💫 Los Alamos

R, **BLACK & VEATCH**

CFV Labs

Perovskite PV Performance Targets in the US

- DOE SETO has set performance targets for perovskite modules
 - Higher efficiency
 - Larger areas
 - Durability
 - Manufacturing scale

Configuration	Aperture Area PCE ¹	Total Module Area ²	Durability	Sample Population Requirements
Single Junction	18% PCE	>=500 cm ² with at least 4 interconnected cells	Pass IEC 61215 Module Quality Test (MQT) 10, 11, 13 and 21 and ISOS-L-2 at specified durations with <10% relative performance loss per test ³ 6 months continuous outdoor testing with <3% relative degradation overall and <1% degradation in the final 3-month span ⁴	>1 kW total, at least 20 modules for outdoor testing ⁵
PVSK-only Tandems	24% PCE			
Hybrid Tandems	27% PCE			

W

How to Support the Commercialization?

- We need a common set of testing protocols (performance, reliability)
 - Tests should represent/reproduce relevant conditions/failures seen in the field.
 - For example: Light and elevated temperature testing appears to be important. Extended STC testing gives a false impression of reliability.
- Industry needs to demonstrate that <u>high efficiency</u>, <u>reliable</u> perovskites can be <u>scaled to larger sizes</u>, be made using <u>commercial manufacturing equipment</u>, and produced at a <u>rapid rate</u>.
- Support new companies with testing, manufacturing, and bankability services.
- More research on sustainability potential of perovskite PV.

PACT: Perovskite PV Accelerator for Commercial Technologies

- Sandia is leading a multilab validation center (Team includes NREL, LANL, EPRI, Black & Veatch, and CFV Labs). <u>https://pvpact.sandia.gov</u>
- We are partnering with four universities to supply perovskite mini-modules for testing.

🔊 Los Alamos

- University of North Carolina
- University of Toledo

Sandia National Laboratories

U.S. DEPARTMENT OF

- University of Washington
- SLAC/Stanford University

PACT Module Testing Status

• We have received >100 modules from our university partners.

₽⁄

BLACK & VEATCH

🔊 Los Alamos

EPGI

ELECTRIC POWER

CFV Labs

- Distributed to
 - Baseline and controls (7)
 - Outdoor testing (29)
 - Light and elevation temperature (16)
 - UV (17)

U.S. DEPARTMENT OF

• Thermal cycling (16)

Sandia National Laboratories

• Preconditioning development (11)

• Module imaging (42)

Stanford

University

SLAC

TOLEDO

W

UNIVERSITY of

WASHINGTON

PACT: Outdoor Testing

- Early field tests have had mixed results.
 - Some modules fail in days
 - One module has lasted for months!
 - Failures appear to be related to manufacturing issues and not failure of the perovskite absorber layer.
- PACT is actively reaching out to perovskite startup manufacturers to begin helping them develop their products for the market.

PA

2-axis tracker at Sandia

9

P0003 Outdoor Testing

- All modules saw rapid degradation and then somewhat stabilized after three days.
- Efficiency over the day shows some interesting patterns
 - Declines from ~17% to ~6% over time.
 - Highest in morning and evening
 - Lowest in midday (likely caused by high Rs)

P0003 Module in Field in NM

Rapidly declining performance precludes performance model characterization.

10

P-0004 Outdoor Testing

- Champion module performing at about 10%
- Modules fairly stable over the first week though low starting efficiency
- Losing ~50% power over 12 days.
- Not showing the same Rs issues we see with P-0001/P-0003

Accelerated Tests Need to be Adapted to Perovskites

- Qualification tests (e.g., IEC 61215) help to provide confidence that modules will initially survive outdoor deployment - they do not test long-term reliability.
- These tests are modified for different PV technologies (e.g., c-Si, a-Si, CdTe, CIGS, etc.)
- Tests should demonstrate realistic observed field failures.

(Photography) Precondition / Ratio Test nance Characterizatio e.g., Asymptotic Method) Module Characterization (EL PL DUIT OF) MHP-Focused Package-Focused Damp Heat Light and Temperature IEC 61215 MQT 13 UV Exposure reliability testing for perovskite based hermal Cycling 1-sun / 75°C, 250 hrs 15 kWh/m², 60°C 50 Cycles -40 to 85 ∘C 48 Hours (Atlas Ci4400/Ci5000 (Qlab QUV) UV-filtered Xenon) Thermal Cycling IEC 61215 MQT Visual Inspection 50 Cycles (Photography) Humidity-Freeze Precondition / Ratio Test x4 or failure IEC 61215 MQT 12 10 Cycles Performance Characterization (e.g., Asymptotic Method) Visual Inspection Module Characterization (EL, PL, DLIT, QE) ography, Ca test optional Precondition / Ratio Test EoL Materials Forensics (e.g., Structural, Mechanical, Chemical) Performance Characterization (e.g., Asymptotic Method)

Visual Inspection

PACT Poster – Fri 8:30 – 10:00

photovoltaic devices"

Parallel Event – Wed 17:00 – 18:30:

"Pathways and Challenges of

 3EO.1.2 Towards Standardization of **Accelerated Stress Testing Protocols** for Metal-Halide Perovskite Photovoltaic Modules

x3 or failure

Bankability of Perovskites – Lead Risks

- Most promising perovskite formulations ٠ contain lead in a highly soluble form.
- Risks of lead toxicity present challenges for ٠ bankability of this technology
 - Leaching, fire, disposal, etc.
- How much lead will leach out if module breaks and ٠ exposed to water?
- Researchers are investigating materials to sequester lead inside the module.
 - We reviewed 35 leaching experiments comparing the effects of encapsulation and sequestration materials.
 - All samples with sequestration materials added passed the RCRA Lead Limit (5 mg/l)

PACT Poster: Mon 13:30 - 15:00

U.S. DEPARTMENT OF

ENERGY

Sandia

National

Laboratories

• 2AV.1.38 Environmental and Health Safety Risk Assessment for Perovskite Solar Cells and Modules

ONREL

🚫 Los Alamos

BLACK & VEATCH

RESEARCH INSTITUTE

WASHINGTON

More Information

Many documents are available on the PACT website (<u>https://pvpact.sandia.gov</u>)

- Legal agreements
- Data management plan
- Module packaging guidelines
- Module stress test protocol
- Preconditioning protocol

Thank you! Joshua S. Stein jsstein@sandia.gov

Publications and Protocols

PACT is working on the first versions of performance and reliability test protocols for perovskite PV technologies. Once they are complete they will be available on this page.

- PACT Module Preconditioning Protocol Version 0.1 (219 downloads) (3/30/2022)
- <u>PACT Recommended Packaging Procedure version 4 (149 downloads)</u> (3/29/2022)
- PACT Module Design Acceptance Criteria (Research) V. 1.0 (128 downloads) (3/14/2022)
- PACT Module Design Acceptance Criteria (Industry) V 1.0 (181 downloads) (2/24/2022)
- PACT Nondisclosure Agreement (99 downloads) (2/24/2022)
- PACT Materials Transfer Agreement (89 downloads) (2/24/2022)
- PACT Perovskite PV Module Stress Testing Protocol Version 0.1 (180 downloads) (3/14/2022)
- PACT Center Factsheet (145 downloads) (11/3/2021)
- PACT Data Management Plan (142 downloads) (10/20/2021)

Sandia National Laboratories

