

Technical Barriers to the Commercialization of Perovskite Photovoltaics: How Do We Overcome Them?

Joshua S. Stein PhD., Sandia National Laboratories

2022 APSRC Newcastle, Australia

BLACK & VEATCH

https://pvpact.sandia.gov

ELECTRIC POWER

RESEARCH INSTI

w

TOLEDO

SAND2022-16060 C

andia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywel ternational Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

🚵 Los Alamos

Acknowledgements

- This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number 38050.
- The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
- PACT Team:
 - Laura Schelhas², Bruce King¹, Wanyi Nie³, Ralph Romero⁴, Jim Crimmins⁵, Cara Libby⁶, Angelique Montgomery¹, Charles Robinson¹, Christa Torrence¹, Marios Theristis¹, Joseph Berry², Timothy J Silverman², Michael Owen-Bellini², Ingrid Repins², Dana Sulas-Kern², Michael G. Deceglie², Robert White², Kirsten Perry², Paul Ndione², Nikos Kopidakis², Jack Schall², Rob Foree⁴, Daniel Zirzow⁵, James Richards⁵, Colin Sillerud⁵, Wayne Li⁶
 - ¹Sandia National Laboratories, United States
 - ²National Renewable Energy Laboratory, United States
 - ³Los Alamos National Laboratory, United States
 - ⁴Black & Veatch, United States,
 - ⁵CFV Labs, United States,
 - ⁶Electric Power Research Institute, United States

What are Perovskite Photovoltaics?

History

2009

- "Perovskite" refers to a crystal ٠ structure.
- Metal Halide Perovskite PV has a ٠ range of chemical compositions:

A= Pb, Sn, Ge, Bi, Sb, ... X=halides (Cl, Br, I) **B=** Organics or metal (Cs)

To make things even more ٠ complex, alloys are possible.

U.S. DEPARTMENT OF

Sandia National Laboratories

Low temperature

Solution processing

High speed manufacturing

• First perovskite PV cell reported in

• <3% PCE (power conversion

Promise of low cost manufacturing

• >= 25.7% single junction cell. (limit –

• It took 40 years to achieve this PCE for c-

efficiency)

• PCE has risen fast

33%)

Si.

TOLEDO

Stanford

University

AC

area Source: (Li et al., 2018)

Monolithic module integration

Dead

Active

area

Compositional Diversity

- Unlike many existing commercial PV technologies, perovskite PV composition can be quite varied.
 - This leads to many published papers.
 - 6,581 papers found between 2009-2018*
 - Good for academics, creates some confusion!
- Why is this important?
 - A few formulations are proving to have high PCE, and *relatively high reliability durability*.
 - Most formulations are terrible solar cell materials.
 - Low efficiency, unstable, degrade in light and/or typical operating temperatures, etc.
 - Problems suffered by one material may not affect other materials.

Examples of PCSs using different metals

* https://doi.org/10.1016/j.egyr.2020.07.029

Stanford

University

Performance Characteristics

- Much of what we "know" about performance characteristics of perovskite PV is affected by the high diversity of formulations.
 - Not all PSCs are the same and some are much more stable than others.
- Common observations

Sandia National Laboratories

U.S. DEPARTMENT OF

- IV hysteresis difference between forward and reverse IV scans.
- Scanning rate affects resulting IV curve.
- Stable measurements currently require a continuous solar simulator and either MPPT or asymptotic IV curve (proposed by NREL) – SLOW!

₽⁄

BLACK & VEATCH

💫 Los Alamos

- This presents a problem for manufacturers How to characterize modules inline during production?
 - Requires measurements to be made in <1 sec

🖾 NREL

Importance of Field Data

- Mark Khenkin has measured long-term outdoor performance of many perovskite PV cells in Germany (some for as much as two years).
- He and others have observed large seasonal fluctuations in performance ratio.
 - THIS IS NOT EVIDENCE OF A POSITIVE TEMPERATURE COEFFICIENT!!
 - Indoor controlled measurements prove that PSC temperature coefficients are negative.
 - Source of this behavior is still a mystery.
 - Small part is likely due to spectral response
 - Other factors may include metastability from the combined effect of temperature and changes in the length of the day/night.

Plot from Mark Khenkin (Helmholtz-Berlin)

Metastability Behavior and Appropriate Testing

- Most PSC researchers test their cells under constant illumination.
- Constant illumination tests may be misleading.
- Behavior is different when light is cycled.
 - Strongly dependent on device architecture.

SAM – Self-assembled monolayer used as a hole-selective contact

SNREL

R,

BLACK & VEATCH

EPCI

LECTRIC POWER

ESEARCH INSTITUT

CFV Labs

💫 Los Alamos

Sandia National Laboratories

U.S. DEPARTMENT OF

UNIVERSITY of

WASHINGTON

TOLEDO

Stanford

University

AC

Manufacturing Method Diversity

- There are many solution/vapor processing application methods that are being investigated.
- Variety comes with benefits and challenges.
 - Variability between different perovskite PV manufacturers is far larger than for c-Si.
 - Many options for overcoming problems
 - Fewer opportunities for sharing best practices.

💫 Los Alamos

• Perovskite PV manufacturing footprint is relatively small compared with c-Si.

🖾 NREL

• Glass in.... Modules out

Sandia National Laboratories

U.S. DEPARTMENT OF

• Perovskite PV should be much more straightforward to recycle than c-Si.

Stanford

University

Technical Challenges Facing Commercialization

Perovskite PV Performance Targets in the US

- DOE SETO has set performance targets for perovskite modules
 - Higher efficiency
 - Larger areas
 - Durability

U.S. DEPARTMENT OF

• Manufacturing scale

Sandia National Laboratories

Configuration	Aperture Area PCE ¹	Total Module Area ²	Durability	Sample Populati Requirements
Single Junction	18% PCE	>=500 cm ² with at least 4 interconnected cells	Pass IEC 61215 Module Quality Test (MQT) 10, 11, 13 and 21 and ISOS-L-2 at specified durations with <10% relative performance loss per test ³ 6 months continuous outdoor testing with <3% relative degradation overall and <1% degradation in the final 3-month span ⁴	>1 kW total, at least 20 modules for outdoor testing ⁵
PVSK-only Tandems	24% PCE			
Hybrid Tandems	27% PCE			
	27% PCE	S	degradation overall and <1% degradation in the final 3-month	

Tandat Matahu

How to Support the Commercialization?

- We need a common set of testing protocols (performance, reliability)
 - Tests should represent/reproduce relevant conditions/failures seen in the field.
 - For example: Light and elevated temperature testing appears to be important. Extended STC testing gives a false impression of reliability.
- Industry needs to demonstrate that <u>high efficiency</u>, <u>reliable</u> perovskites can be <u>scaled to larger sizes</u>, be made using <u>commercial manufacturing equipment and</u> <u>economically reasonable materials</u> and produced at a <u>rapid rate</u>.
 - No spin coating
 - No gold, no SPRIO, etc.
- Support new companies with testing, manufacturing, and bankability services.
- More research on sustainability potential of perovskite PV.

PACT: Perovskite PV Accelerator for Commercial Technologies

- Sandia is leading a multilab validation center (Team includes NREL, LANL, EPRI, Black & Veatch, and CFV Labs). https://pvpact.sandia.gov
- We are partnering with four universities to supply perovskite mini-modules for testing.

🔊 Los Alamos

- University of North Carolina
- University of Toledo

Sandia National Laboratories

U.S. DEPARTMENT OF

- University of Washington
- SLAC/Stanford University

^B PACT Module Testing Status

• We have received >100 modules from our university partners.

₽⁄

BLACK & VEATCH

🔊 Los Alamos

EPR

ELECTRIC POWER

CFV Labs

- Distributed to
 - Baseline and controls (7)
 - Outdoor testing (29)
 - Light and elevation temperature (16)
 - UV (17)

U.S. DEPARTMENT OF

• Thermal cycling (16)

Sandia National Laboratories

• Preconditioning development (11)

• Module imaging (42)

Stanford

University

SLAC

TOLEDO

W

UNIVERSITY of

WASHINGTON

PACT: Outdoor Testing

- Early field tests have had mixed results.
 - Some modules fail in days
 - One module has "lasted" for months
 - Failures appear to be related to manufacturing issues and not failure of the perovskite absorber layer.
- PACT is actively reaching out to perovskite startup manufacturers to begin helping them develop their products for the market.

PA

2-axis tracker at Sandia

P0003 Outdoor Testing

- All modules saw rapid degradation and then somewhat stabilized after three days.
- Efficiency over the day shows some interesting patterns
 - Declines from ~17% to ~6% over time.
 - Highest in morning and evening
 - Lowest in midday (likely caused by high Rs)

P0003 Module in Field in NM

Rapidly declining performance precludes performance model characterization.

P-0004 Outdoor Testing

- Champion module performing at about 10%
- Modules fairly stable over the first week though low starting efficiency
- Losing ~50% power over 12 days.
- Not showing the same Rs issues we see with P-0001/P-0003

Accelerated Tests Need to be Adapted to Perovskites

- Qualification tests (e.g., IEC 61215) help to provide confidence that modules will initially survive outdoor deployment – they do not test long-term reliability.
- These tests are modified for different PV technologies (e.g., c-Si, a-Si, CdTe, CIGS, etc.)
- Tests should demonstrate realistic observed field failures.

Sandia

National

Laboratories

U.S. DEPARTMENT OF

Initial PACT Accelerated Reliability Protocol

Bankability of Perovskites – Lead Risks

- Most promising perovskite formulations contain **lead in a highly soluble form**.
- Risks of lead toxicity present challenges for bankability of this technology
 - Leaching, fire, disposal, etc.
- How much lead will leach out if module breaks and exposed to water?
- Researchers are investigating materials to sequester lead inside the module.

Sandia National

Laboratories

- We reviewed 35 leaching experiments comparing the effects of encapsulation and sequestration materials.
- All samples with sequestration materials added passed the RCRA Lead Limit (5 mg/l)

🖾 NREL

💫 Los Alamos

19

U.S. DEPARTMENT OF

More Information about PACT

Stanford

University

6

Many documents are available on the PACT website (<u>https://pvpact.sandia.gov</u>)

• Legal agreements

U.S. DEPARTMENT OF

- Data management plan
- Module packaging guidelines
- Module stress test protocol
- Preconditioning protocol

Sandia National

Laboratories

🖾 NREL

Publications and Protocols

PACT is working on the first versions of performance and reliability test protocols for perovskite PV technologies. Once they are complete they will be available on this page.

- <u>PACT Module Preconditioning Protocol Version 0.1 (219 downloads)</u> (3/30/2022)
- <u>PACT Recommended Packaging Procedure version 4 (149 downloads)</u> (3/29/2022)
- PACT Module Design Acceptance Criteria (Research) V. 1.0 (128 downloads) (3/14/2022)
- PACT Module Design Acceptance Criteria (Industry) V 1.0 (181 downloads) (2/24/2022)
- PACT Nondisclosure Agreement (99 downloads) (2/24/2022)
- PACT Materials Transfer Agreement (89 downloads) (2/24/2022)
- PACT Perovskite PV Module Stress Testing Protocol Version 0.1 (180 downloads) (3/14/2022)
- PACT Center Factsheet (145 downloads) (11/3/2021)

CFV Labs

₽**v**

BLACK & VEATCH

💫 Los Alamos

EPCI

RESEARCH INSTITUTE

ELECTRIC POWER

• PACT Data Management Plan (142 downloads) (10/20/2021)

w

UNIVERSITY of

WASHINGTON

TOLEDO

SUMMARY

- Composition diversity of perovskite PV is both a blessing and a curse for commercialization.
- Efficiency records are fine, but consistency and variations in a batch may be more important.
- Focus should be on devices that have a chance of being commercialized (materials, manufacturability, scalability, etc.)
- Testing needs to be more representative of deployment conditions (light cycling, temperature, etc.)
- We need to remain focused on the goal of commercialization.
 - Successful perovskite modules will be commodities not a high-performance custom devices.

